
2 The Two Faces of Fitness

Elliott Sober

The concept of fitness began its career in biology long before evolutionary theory was

mathematized. Fitness was used to describe an organism’s vigor, or the degree to which

organisms ‘‘fit’’ into their environments. An organism’s success in avoiding predators

and in building a nest obviously contributes to its fitness and to the fitness of its off-

spring, but the peacock’s gaudy tail seemed to be in an entirely different line of work.

Fitness, as a term in ordinary language (as in ‘‘physical fitness’’) and in its original bio-

logical meaning, applied to the survival of an organism and its offspring, not to sheer

reproductive output (Cronin 1991, Paul 1992). Darwin’s separation of natural from

sexual selection may sound odd from a modern perspective, but it made sense from

this earlier point of view.

Biologists came to see that this limit on the concept of fitness is theoretically unjus-

tified. Fitness is relevant to evolution because of the process of natural selection. Selec-

tion has an impact on the traits that determine how likely it is for an organism to

survive from the egg stage to adulthood, but it equally has an impact on the traits

that determine how successful an adult organism is likely to be in having offspring.

Success concerns not just the robustness of offspring but their number. As a result, we

now regard viability and fertility as two components of fitness. If p is the probability

that an organism at the egg stage will reach adulthood, and e is the expected number

of offspring that the adult organism will have, then the organism’s overall fitness is the

product pe, which is itself a mathematical expectation. Thus, a trait that enhances

an organism’s viability but renders it sterile has an overall fitness of zero. And a trait

that slightly reduces viability, while dramatically augmenting fertility, may be very fit

overall.

The expansion of the concept of fitness to encompass both viability and fertility

resulted from the interaction of two roles that the concept of fitness plays in evolution-

ary theory. It describes the relationship of an organism to its environment. It also has a
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mathematical representation that allows predictions and explanations to be formu-

lated. Fitness is both an ecological descriptor and a mathematical predictor. The descriptive

ecological content of the concept was widened to bring it into correspondence with

the role that fitness increasingly played as a mathematical parameter in the theory of

natural selection.

In this chapter I want to discuss several challenges that have arisen in connection

with idea that fitness should be defined as expected number of offspring. Most of

them are discussed in an interesting article by Beatty and Finsen (1989). Ten years

earlier, they had championed a view they dubbed ‘‘the propensity interpretation of fit-

ness’’ (Mills and Beatty 1979; see also Brandon 1978). In the more recent article, they

‘‘turn critics.’’ Should fitness be defined in terms of a one-generation time frame—why

focus on expected number of offspring rather than grandoffspring, or more distant

descendants still? And is the concept of mathematical expectation the right one to

use? The details of my answers to these questions differ in some respects from those

suggested by Beatty and Finsen, but my bottom line will be the same—expected num-

ber of offspring is not always the right way to define fitness.

In what follows, I will talk about an organism’s fitness even though evolutionary

theory shows scant interest in individual organisms but prefers to talk about the fitness

values of traits (Sober 1984). Charlie the Tuna is not a particularly interesting object of

study, but tuna dorsal fins are. Still, for the theory of natural selection to apply to the

concrete lives of individual organisms, it is essential that the fitness values assigned to

traits have implications concerning the reproductive prospects of the individuals that

have those traits. How are trait fitnesses and individual fitnesses connected? Because

individuals that share one trait may differ with respect to others, it would be unreason-

able to demand that individuals that share a trait have identical fitness values. Rather,

the customary connection is that the fitness value of a trait is the average of the fitness

values of the individuals that have the trait. For this reason, my talk in what follows

about the fitness of organisms will be a harmless stylistic convenience.

To begin, let us remind ourselves of what the idea of a mathematical expectation

means. An organism’s expected number of offspring is not necessarily the number of

offspring one expects the organism to have. For example, suppose an organism has

the following probabilities of having different numbers of offspring:

number ðiÞ of offspring 0 1 2 3

probability ðpiÞ of having exactly i offspring 0.5 0.25 0.125 0.125

The expected number of offspring is
P

ipi ¼ 0ð0:5Þ þ 1ð0:25Þ þ 2ð0:125Þ þ 3ð0:125Þ ¼
0:875, but we do not expect the organism to have precisely 7/8ths of an offspring.

Rather, ‘‘expectation’’ means mathematical expectation, a technical term; the expected

value is, roughly, the (arithmetic) average number that the individual would have if it
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got to live its life again and again in identical circumstances. This is less weird than it

sounds; a fair coin has 3.5 as the expected number of times it will land heads if it is

tossed 7 times.

In this example, the expected number of offspring will not exactly predict an indi-

vidual’s reproductive output, but it will probably come pretty close. However, there

are cases in which the expected value provides a very misleading picture as to what

one should expect. Lewontin and Cohen (1969) develop this idea in connection with

models of population growth. Suppose, to use one of their examples, that each year a

population has a probability of 0.9 of having a growth rate of 1.1 and a probability of

0.1 of having a growth rate of 0.3. The expected (arithmetic mean) growth rate per year

is ð0:9Þð1:1Þ þ ð0:1Þð0:3Þ ¼ 1:02; thus, the expected size of the population increases by

2% per year. At the end of a long stretch of time, the population’s expected size will be

much larger than its initial size. However, the fact of the matter is that the population

is virtually certain to go extinct in the long run. This can be seen by computing the

geometric mean growth rate. The geometric mean of n numbers is the nth root of their

product; because ½ð1:1Þ9ð0:3Þ�1=10 is less than unity, we expect the population to go ex-

tinct. To see what is going on here, imagine a very large number of populations that

each obey the specified pattern of growth. If we follow this ensemble for, say, 1000

years, what we will find is that almost all of the populations will go extinct, but a very

small number will become huge; averaging over these end results, we will obtain the

result that, on average, populations grow by 2% a year. Lewontin and Cohen point

out that this anomaly is characteristic of multiplicative processes.

A simpler and more extreme example that illustrates the same point is a population

that begins with a census size of 10 individuals and each year has a 0.5 chance of tri-

pling in size and a 0.5 chance of going extinct. After 3 years, the probability is 7/8 that

the population has gone extinct, but there is a probability of 1/8 that the population

has achieved a census size of ð3Þð3Þð3Þ10 ¼ 270. The expected size of the population is

ð7=8Þð0Þ þ ð1=8Þð270Þ ¼ 33:75. This expected size can be computed by taking the

expected yearly growth rate of ð0:5Þð3Þ þ ð0:5Þ0 ¼ 1:5 and raising it to the third power;

ð1:5Þð1:5Þð1:5Þ10 ¼ 33:75. In expectation, the population increases by 50% per year,

but you should expect the population to go extinct.

Probabilists will see in this phenomenon an analogue of the St. Petersburg paradox

( Jeffrey 1983). Suppose you are offered a wager in which you toss a coin repeatedly

until tails appears, at which point the game is over. You will receive 2n dollars, where n

is the number of tosses it takes for tails to appear. If the coin is fair, the expected payoff

of the wager is

ð1=2Þ$2þ ð1=4Þ$4þ ð1=8Þ$8þ � � �

The expected value of this wager is infinite, but very few people would spend more

than, say, $10 to buy into it. If rationality means maximizing expected utility, then

people seem to be irrational—they allegedly should be prepared to pay a zillion dollars
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for such a golden opportunity. Regardless of whether this normative point is correct, I

suspect that people may be focusing on what will probably happen, not on what

the average payoff is over all possible outcomes, no matter how improbable. Notice that

the probability is only 1/8 that the game will last more than three rounds. What we

expect to be paid in this game deviates enormously from the expected payoff.

For both ecologists and gamblers, the same advice is relevant: Caveat emptor! If you

want to make predictions about the outcome of a probabilistic process, think carefully

before you settle on expected value as the quantity you will compute.

2.1 The Long-Term and the Short-Term

The definition of fitness as expected number of offspring has a one-generation time

scale. Why think of fitness in this way rather than as having a longer time horizon?

Consider figure 2.1 adapted from Beatty and Finsen (1989). Trait A produces more off-

spring than trait B (in expectation) before time t �; however, after t �, A produces fewer

offspring than B, and in fact A eventually produces zero offspring. The puzzle is that A

seems to be fitter than B in the short term, whereas B seems to be fitter than A in the

long term. Which of these descriptions is correct?

The issue of whether fitness should be defined as a short-term or a long-term quan-

tity will be familiar to biologists from the work of Thoday (1953, 1958), who argued

that fitness should be defined as the probability of leaving descendants in the very

long run; he suggests 108 years as an appropriate time scale. Thoday (1958, p. 317)

says that a long-term measure is needed to obtain a definition of evolutionary progress.

This reason for requiring a long-term concept will not appeal to those who think that

progress is not a scientific concept at all (see, for example, discussion in Nitecki 1988

Figure 2.1

Trait A is fitter than Trait B initially, but later on the reverse is true. This means that B has a higher

long-term fitness than A.
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and Sober 1994). Thoday’s argument also has the drawback that it repeatedly adverts to

the good of the species without recognizing that this may conflict with what is good

for individual organisms.

Setting aside Thoday’s reason for wanting a log-term concept of fitness, does this

concept make sense? Brandon (1990, pp. 24–5) criticizes Thoday’s approach and the

similar approach of Cooper (1984) on the grounds that selection ‘‘proceeds through

generational time’’ and ‘‘has no foresight.’’ I think both these criticisms miss the

mark. Long-term probabilities imply foresight no more than short-term probabilities

do. And the fact that selection occurs one generation at a time does not mean that it

is wrong to define a quantity that describes a trait’s long-term expected fate. Brandon

also faults Thoday’s proposal for failing to be operational. How are we to estimate the

probability that a present organism or species will have descendants in the distant

future? The point is well taken when the inference is prospective; in this case, the

short-term is more knowable than the long-term future. However, when we make retro-

spective inferences, the situation reverses. An inferred phylogeny may reveal that a

derived character displaced an ancestral character in one or more lineages. This infor-

mation may provide evidence for the claim that the derived trait had the higher long-

term fitness. In contrast, the one-generation fitnesses that obtained 60 million years

ago may be quite beyond our ken.

Rather than rejecting a long-term concept of fitness and defending a short-term mea-

sure, I suggest that there is frequently no need to choose. In the accompanying figure,

the y values for A and B at a given time tell us which trait had the higher short-term

fitness at that time. The long-term fitness of a trait—its fitness, say, from t0 to t � or

from t0 to tL—is a statistic that summarizes the relevant short-term values. There is no

paradox in the fact that A has the higher short-term fitness whereas B has the higher

long-term fitness. The same pattern can be found in two babies. The first has the

higher probability of reaching age 20, whereas the second has the higher probability

of surviving to age 60. The probability of a baby’s reaching age 60 is a product—Pr (sur-

viving to age 20 | you are a baby) Pr (surviving to age 60 | you have survived to age

20) ¼ ðs1Þðs2Þ. The first baby may have a higher value on s1 than the second, whereas

the second has a higher value on s2 than the first; overall, the first baby’s product may

be lower than that of the second. Long-term fitness is a coherent concept that may be

useful in the context of certain problems; however, its coherence and desirability do

not undermine the concept of short-term fitness.

2.2 When a One-Generation Time Frame Is Inadequate

The concept of short-term fitness discussed so far has a one-generation time frame—an

organism at the egg stage has a probability p of reaching reproductive age and, once it

is an adult, it has e as its expected number of offspring—the product pe is its overall
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fitness. However, a one-generation time frame will not always be satisfactory for the

concept of short-term fitness. Fisher’s (1930) model of sex ratio shows why (Sober

1984). If, in expectation, one female has 5 sons and 5 daughters whereas another pro-

duces 10 daughters and 0 sons, how can their different sex-ratio strategies make a dif-

ference in their fitnesses? Fisher saw that the answer is invisible if we think one

generation ahead but falls into place if we consider two. The sex ratio exhibited by a

female’s progeny influences how many grandoffspring she will have.

Other examples may be constructed of the same type. Parental care is a familiar

biological phenomenon, but let us consider its extension—care of grandoffspring. If A

individuals care for their grandoffspring, but B individuals do not, it may turn out that

A individuals are fitter. However, the advantage of A over B surfaces only if we consider

the expected numbers of grandoffspring that survive to adulthood. This example may

be more of a logical possibility than a biological reality; still, it and sex ratio illustrate

the same point. In principle, there is no a priori limit on the size of the time frame over

which the concept of fitness may have to be stretched. If what an organism does in its

lifetime affects the life prospects of organisms in succeeding generations, the concept

of fitness may have to encompass those far-reaching effects.

2.3 Stochastic Variation in Offspring Number

Let us leave the question of short-term versus long-term behind and turn now to the

question of whether fitness should be defined as a mathematical expectation. This is

not an adequate definition when there is stochastic variation in viability or fertility.

Dempster (1955), Haldane and Jayakar (1963), and Gillespie (1973, 1974, 1977) con-

sider stochastic variation among generations; Gillespie (1974, 1977) addresses the issue

of within-generation variation. These cases turn out to have different mathematical

consequences for how fitness should be defined. However, in both of them, selection

favors traits that have lower variances. In what follows, I will not attempt to reproduce

the arguments these authors give for drawing this conclusion. Rather, I will describe

two simple examples that exhibit the relevant qualitative features.

Let us begin with the case of stochastic variation among generations. Suppose a pop-

ulation begins with two A individuals and two B’s. A individuals always have two off-

spring, whereas the B individuals in a given generation all have one offspring or all

have three, with equal probability. Notice that the expected (arithmetic average) off-

spring number is the same for both traits—2. However, we will see that the expected

frequency of B declines in the next generation.

Assume that these individuals reproduce asexually and then die and that offspring

always resemble their parents. Given the numbers just described, there will be four A

individuals in the next generation and either two B individuals or six, with equal prob-

ability. Although the two traits begin with the same population frequency and have
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the same expected number of offspring, their expected frequencies in the next genera-

tion differ:

Expected frequency of A ¼ ð1=2Þð4=6þ 4=10Þ ¼ 0:535

Expected frequency of C ¼ ð1=2Þð2=6þ 6=10Þ ¼ 0:465

The trait with the lower variance can be expected to increase in frequency. The appro-

priate measure for fitness in this case is the geometric mean of offspring number aver-

aged over time; this is the same as the expected log of the number of offspring. Trait B

has the lower geometric mean because ½ð3Þð1Þ�1=2 ¼ 1:7 < ½ð2Þð2Þ�1=2 ¼ 2. The geometric

mean is approximately the arithmetic expected number minus s2=2.

Let us now consider the case of within-generation variance in offspring number. Gil-

lespie (1974) describes the example of a bird whose nest has a probability of escaping

predators of about 0.1. Should this bird put all its eggs in one nest or establish separate

nests? If the bird lays 10 eggs in just one nest, it has a probability of 0.9 of having 0

offspring and a probability of 0.1 of having 10. Alternatively, if the bird creates 2 nests

containing 5 eggs each, it has a probability of ð0:9Þ2 of having 0 offspring, a probability

of 2ð0:9Þð0:1Þ of having 5, and a probability of ð0:1Þ2 of having 10. The expected value

is the same in both cases—1.0 offspring—but the strategy of putting all eggs in one

nest has the higher variance in outcomes. This example illustrates the idea of within-

generation variance because two individuals in the same generation who follow the

same strategy may have different numbers of offspring.

Does the process of natural selection vindicate the maxim that there is a disadvan-

tage in putting all one’s eggs in one basket? The answer is yes. To see why, let us exam-

ine a population that begins with two A individuals and two C’s. A individuals always

have two offspring, whereas each C individual has a 50% chance of having 1 offspring

and a 50% chance of having 3. Here C individuals in the same generation may vary

in fitness, but the expected value in one generation is the same as in any other. In

the next generation, there will be four A individuals. There are four equiprobable

arrangements of fitnesses for the two C individuals, and thus there are four equiprob-

able answers to the question of how many C individuals there will be in the next

generation—two, four, four, and six. The expected number of C individuals in the

next generation is four, but the expected frequencies of the two traits change:

Expected frequency of A ¼ ð1=4Þð4=6þ 4=8þ 4=8þ 4=10Þ ¼ 0:52

Expected frequency of C ¼ ð1=4Þð2=6þ 4=8þ 4=8þ 6=10Þ ¼ 0:48

Once again, the trait with the lower variance can be expected to increase in frequency.

In this example, the population grows from four individuals in the first generation

to somewhere between 6 and 10 individuals in the second. Suppose we require that

population size remain constant; after the four parents reproduce, random sampling
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reduces the offspring generation to four individuals. When this occurs, the trait with

the higher variance has the higher probability of going extinct.

Gillespie (1974, 1977) constructed a model to describe the effect of within-

generation variance. A trait’s variance ðs2Þ influences what happens only when

population size ðNÞ is finite; in the infinite limit, variance plays no role. On the basis

of this model, Gillespie says that a trait’s fitness is approximately its arithmetic mean

number of offspring minus the quantity s2=N. Notice that this correction factor will

be smaller than the one required for between-generation variance if N > 2.

Why, in the case of within-generation variance, does the number of individuals ðNÞ
in the whole population appear in the expression that describes the fitness of a single

trait, which may be one of many traits represented in the population? In our example,

why does the fitness of C depend on the total number of C and A individuals? And

why does the effect of selecting for lower variance decline as population size increases?

The reasons can be glimpsed in the simple calculation just described. To figure out the

expected frequency of C, we summed over the four possible configurations that the

population has in the next generation. There is a considerable difference among these

four possibilities—trait C’s absolute frequency is either 2/6, 4/8, 4/8, or 6/10. In con-

trast, if there were 2 C parents but 100 A’s, there still would be four fractions to con-

sider, but their values would be 2/202, 4/204, 4/204, and 6/206; these differ among

themselves much less than the four that pertain to the case of 2 A’s and 2 C’s. The

same diminution occurs if we increase the number of C parents; there would then be

a larger number of possible configurations of the next generation to consider, and

these would differ among themselves less than the four described initially. In the limit,

if the population were infinitely large, there would be no difference, on average, among

the different possible future configurations.

The presence of N in the definition of fitness for the case of within-generation vari-

ance suggests that the selection process under discussion is density dependent. Indeed,

Gillespie (1974, p. 602) says that the population he is describing is ‘‘density-regulated,’’

for a fixed population size is maintained. However, we need to recognize two differ-

ences between the case he is describing and the more standard notion of density de-

pendence that is used, for example, to describe the effects of crowding. In the case of

crowding, the size of the population has a causal impact on an organism’s expected

number of offspring. However, the point of Gillespie’s analysis of within-generation

variance is to show that fitness should not be defined as expected number of offspring.

In addition, the case he is describing does not require that the size of the population

have any causal influence on the reproductive behavior of individuals. The two A’s

and two C’s in my example might be four cows standing in the four corners of a large

pasture; the two A’s have two calves each, whereas each of the C’s flips a coin to decide

whether she will have one calf or three. The cows are causally isolated from each other,

but the fitnesses of the two strategies reflect population size.
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In the two examples just presented, within-generation variance and between-

generation variance have been understood in such a way that the former entails the

latter, but not conversely. Because each C individual in each generation tosses a coin

to determine whether she will have one offspring or three, it is possible for the mean

offspring number produced by C parents in one generation to differ from the mean

produced by the C parents in another. However, B parents in the same generation al-

ways have the same number of offspring. What this means is that B is a strategy that

produces a purely between-generation variance, whereas C is a strategy that produces

both within- and between-generation variance.

In both of the examples I have described, the argument that fitness must reflect vari-

ance as well as the (arithmetic) mean number of offspring depends on the assumption

that fitnesses should predict frequencies of traits. If, instead, one merely demanded that

the fitness of a trait should allow one to compute the expected number of individuals

that will have the trait in the future, given the number of individuals that have the

trait initially, the argument would not go through. The expected number of individu-

als in some future generation is computed by using the arithmetic mean number of off-

spring. When the population begins with two B individuals or with two C individuals,

the expected number of B or C individuals in the next generation is four. The value

that generates this next-generation prediction is two—the arithmetic mean of one

and three. Note that the variance in offspring number and the size of the whole popu-

lation ðNÞ are irrelevant to this calculation.

That fitness is influenced by variance may seem paradoxical at first, but it makes

sense in the light of a simple mathematical consideration. If traits X and Y are exclu-

sive and exhaustive, then the number of X and Y individuals in a given generation

determines the frequencies with which the two types occur at that time; however, it is

not true that the expected number of X and Y individuals determines their expected fre-

quencies. The reason is that frequency is a quotient:

frequency of X individuals ¼

ðnumber of X individualsÞ=ðtotal number of individualsÞ:

The important point is that the expected value of a quotient is not identical with the

quotient of expected values:

Eðfrequency of X individualsÞ0

Eðnumber of X individualsÞ=Eðtotal number of individualsÞ:

This is why a general definition of fitness cannot equate fitness with expected offspring

number. The fitness values of traits, along with the number of individuals initially pos-

sessing each trait, are supposed to entail the expected frequencies of the traits one or

more generations in the future (if selection is the only force influencing evolutionary
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change). Expected number of offspring determines the value of the quotient on the

right, but the expected frequency is left open.

Notice that this point about the definition of fitness differs from the one that Lewon-

tin and Cohen (1969) made concerning population growth. Their point was to warn

against using the expected number of individuals as a predictor. The present idea is that

if one wants to predict the expected frequencies of traits, something beyond the expected

number of individuals having the different traits must be taken into account.

2.4 Conclusion

Evolutionists are often interested in long-term trends rather than in short-term

events. However, this fact about the interests of theorists does not mean that the theory

enshrines an autonomous concept called ‘‘long-term fitness.’’ The long-term is a func-

tion of what happens in successive short terms. This metaphysical principle is alive

and well in evolutionary theory. However, traits like sex ratio show that the short

term sometimes has to be longer than a single generation.

The example of sex ratio aside, we may begin thinking about the fitness of a trait by

considering a total probability distribution, which specifies an individual’s probability

of having 0;1; 2;3 . . . offspring. The expected value is a summary statistic of this distri-

bution. Although this statistic sometimes is sufficient to predict expected frequencies,

it is not always a sufficient predictor; when there is stochastic variation in offspring

number, the variance is relevant as well.

Are the mean and variance together sufficient to define the concept of fitness? Beatty

and Finsen (1989) point out that the skew of the distribution is sometimes relevant.

In principle, fitness may depend on all the details of the probability distribution.

However, Gillespie’s analysis of within-generation variance leads to a more radical con-

clusion. When there is stochastic variation within generations, Gillespie says that the

fitness of a trait is approximately the mean offspring number minus s2=N. Notice that

the correction factor adverts to N, the population size; this is a piece of information

not contained in the probability distribution associated with the trait. It is surprising

that population size exerts a general and positive effect on fitness.

The results of Dempster, Haldane and Jayakar, and Gillespie show how the mathe-

matical development of a theoretical concept can lead to a reconceptualization of its

empirical meaning. In Newtonian mechanics, an object’s mass does not depend on its

velocity or on the speed of light; in relativity theory, this classical concept is replaced

with relativistic mass, which is the classical mass divided by ð1� v2=c2Þ1=2. As an

object’s velocity approaches zero, its relativistic mass approaches the classical value. In

similar fashion, the corrected definition of fitness approaches the ‘‘classical’’ definition

as s2 approaches zero. People reacted to Einstein’s reconceptualization of mass by say-

ing that it is strange and unintuitive, but the enhanced predictive power of relativity

34 Elliott Sober



theory meant that these intuitions had to be re-educated. A definition of fitness that

reflects the expected number of offspring, the variance in offspring number, and the

population size yields more accurate predictions of expected population frequencies

than the classical concept, and so it is preferable for the same reason.

It is sometimes said that relativity theory would not be needed if all objects moved

slowly. After all, the correction factor ð1� v2=c2Þ1=2 makes only a trivial difference

when vf c. The claim is correct when the issue is prediction, but science has goals

beyond that of making accurate predictions. There is the goal of understanding

nature—of grasping what reality is like. Here we want to know which laws are true,

and relativity theory has value here, whether or not we need to use that theory to

make reasonable predictions. A similar point may apply to the corrected definition of

fitness; perhaps evolving traits rarely differ significantly in their values of s2; if so, the

corrected definitions will not be very useful when the goal is to predict new trait fre-

quencies. This is an empirical question whose answer depends not just on how traits

differ with respect to their variances but on the population size; after all, even modest

differences in fitness can be important in large populations. But quite apart from the

goal of making predictions, there is the goal of understanding nature—we want to un-

derstand what fitness is. In this theoretical context, the corrected definition of fitness is

interesting.

What is the upshot of this discussion for the ‘‘propensity interpretation of fitness?’’

This interpretation has both a nonmathematical and a mathematical component. The

nonmathematical idea is that an organism’s fitness is its propensity to survive and be

reproductively successful. Propensities are probabilistic dispositions. An organism’s fit-

ness is like a coin’s probability of landing heads when tossed. Just as a coin’s probabil-

ity of landing heads depends on how it is tossed, so an organism’s fitness depends on

the environment in which it lives. And just as a coin’s probability may fail to coincide

exactly with the actual frequency of heads in a run of tosses, so an organism’s fitness

need not coincide exactly with the actual number of offspring it produces.

These ideas about fitness are not threatened by the foregoing discussion. However,

the propensity interpretation also has its mathematical side, and this is standardly

expressed by saying that fitness is a mathematical expectation (see, for example, Bran-

don 1978, Mills and Beatty 1979, Sober 1984). As we have seen, this characterization is

not adequate in general, although it is correct in special circumstances. But perhaps all

we need do is modify the mathematical characterization of fitness while retaining the

idea that fitness is a propensity (Brandon 1990, p. 20).

This modest modification seems unobjectionable when there is between-generation

variation in fitness; after all, if an organism’s expected (¼ arithmetic mean) number of

offspring reflects a ‘‘propensity’’ that it has, so too does its geometric mean averaged

over time. However, when there is within-generation variation, the propensity inter-

pretation is more problematic. The problem is the role of population size ðNÞ in the
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definition. To say that a coin is fair—that p ¼ 1=2, where p is the coin’s probability of

landing heads when tossed—is to describe a dispositional property that it has. How-

ever, suppose I define a new quantity, which is the coin’s probability of landing heads

minus s2=N, where N is the number of coins in some population that happens to con-

tain the coin of interest. This new quantity ðp� s2=NÞ does not describe a property

(just) of the coin. The coin is described by p and by s2, but N adverts to a property

that is quite extrinsic to the coin.

Is it really tenable to say that p describes a propensity that the coin has but that

ðp� s2=NÞ does not? After all, the coin’s value for p reflects a fact about how the coin

is tossed just as much as it reflects a fact about the coin’s internal composition. Perhaps

the propensity is more appropriately attributed to the entire coin-tossing device. How-

ever, ðp� s2=NÞ brings in a feature of the environment—N—that has no causal impact

whatever on the coin’s behavior when it is tossed. It is for this reason that we should

decline to say that ðp� s2=NÞ represents a propensity of the coin.

I conclude that an organism’s fitness is not a propensity that it has—at least not

when fitness must reflect the existence of within-generation variance in offspring num-

ber. In this context, fitness becomes a more ‘‘holistic’’ quantity; it reflects properties of

the organism’s relation to its environment that affect how many offspring the organ-

ism has; but fitness also reflects a property of the containing population—namely, its

census size—that may have no effect on the organism’s reproductive behavior. Of

course, the old idea that fitness is a mathematical expectation was consistent with the

possibility that this expectation might be influenced by various properties of the pop-

ulation; frequency-dependent and density-dependent fitnesses are nothing new. What

is new is that the definition of fitness, not just the factors that sometimes affect an indi-

vidual’s expected number of offspring, includes reference to census size.
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